The UpstashKnowledgeBase class provides integration with Upstash Vector, a vector database service that enables semantic search and similarity matching. The class facilitates document indexing, searching, and topic-based organization using Upstash Vector’s vector search capabilities.

Prerequisites

Before using the Upstash knowledge base, you need:

  1. An Upstash account
  2. A Vector Index created in the Upstash Console
  3. Your Vector Index URL and token

Dependencies

The following external dependencies are required:

uv add "trusttest[rag-upstash]"

Usage Example

import os

from dotenv import load_dotenv

from trusttest.catalog import RagPoisoningScenario
from trusttest.knowledge_base.upstash import UpstashKnowledgeBase
from trusttest.models.testing import DummyEndpoint
from trusttest.probes.rag import MaliciousQuestion

load_dotenv(override=True)

# Initialize the knowledge base with your Upstash Vector credentials
knowledge_base = UpstashKnowledgeBase(
    url=os.getenv("UPSTASH_VECTOR_REST_URL"),
    token=os.getenv("UPSTASH_VECTOR_REST_TOKEN")
)

# Create and run an adversarial RAG test scenario
rag_test = RagPoisoningScenario(
    model=DummyEndpoint(),
    knowledge_base=knowledge_base,
    num_questions=10,
    question_types=[MaliciousQuestion.SPECIAL_TOKEN, MaliciousQuestion.HYPOTHETICAL],
)

test_set = rag_test.probe.get_test_set()
results = rag_test.eval.evaluate(test_set)
results.display_summary()